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Abstract

▪ First explored in the context of timekeeping and planetary motion, the pendulum 
has long served as a foundational model in classical mechanics. This talk revisits the 
system in a modified form—the rebound pendulum—as a means of investigating 
energy dissipation through impact. Though simple in form, the rebound pendulum 
offers a precise and versatile framework for analyzing non-conservative energy 
exchange. By connecting potential, kinetic, and geometric measures of motion 
through the coefficient of restitution, a unified description of collision efficiency 
emerges. The square of this coefficient provides a direct measure of energy 
retained post-impact, whether quantified by rebound height, angular deflection, or 
velocity. Experimental methods are considered for validating these relationships 
across a range of materials, revealing the restitution coefficient not merely as a 
descriptive parameter, but as a diagnostic tool for probing material response and 
impact dynamics. In reframing the pendulum from a standard classroom device to 
a model of dissipative behavior, the discussion underscores both the enduring 
relevance of classical systems and their capacity to yield insight into the subtleties 
of physical interaction.
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Problem Statement

Consider a modified 
pendulum as shown.

The pendulum consists 
of a 15-kg solid ball 
and 6-kg rod. If it is 
released from rest 
when 𝜃𝜃1 = 90°, 
determine the angle 𝜃𝜃2
after the ball strikes 
the wall, rebounds, and 
the pendulum swings 
up to the point of 
momentary rest. Take 
𝑒𝑒 = 0.6.



Motivating the Problem

• How do we measure or calculate energy loss from a single collision?

• How can rebound angle, rebound height, or rebound velocity reveal this loss?

• How does rebound angle relate to the restitution coefficient, energy, or efficiency?

• Why is this interesting or useful?



Motivating the Problem (w/ History)

• 1602 – Galileo Galilei discovers the isochronism of the pendulum
• Period is independent of amplitude (for small angles)
• Proposes pendulums for time-keeping
• Start of classical interest in pendular motion

• 1656 – Christiaan Huygens builds the first pendulum clock
• Develops precision instruments around pendular motion
• Established mathematical treatment of oscillatory motion

• 1742 – Benjamin Robins invents the ballistic pendulum
• Measured projectile velocity via inelastic collisions
• One of the first applications of momentum and energy in pendular motion

• 1901 – Georges Charpy develops the Charpy impact test
• Measured absorbed energy in fractures
• Still widely used today



Assumptions

• Pendulum is released from an angle of 90°.

• Pendulum collides perfectly perpendicular to rebound surface (head-on collision).

• The rebound surface is fixed and remains stationary.

• The pendulum’s moment of inertia remains constant throughout collision (no deformations).

• Energy is conserved leading up to and immediately following the collision (ignoring axle 
friction and drag forces).

• Energy is lost during the collision (inelastic collision).



Working the Problem

Beginning with conservation of energy before and after the collision,

Assuming the moment of inertia remains constant throughout the collision,

𝐼𝐼 =
2𝑚𝑚𝑚𝑚ℎ1𝑖𝑖
𝜔𝜔1𝑓𝑓2

=
2𝑚𝑚𝑚𝑚ℎ2𝑓𝑓
𝜔𝜔2𝑖𝑖
2

ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖
2

𝜔𝜔1𝑓𝑓2
=
𝑣𝑣2𝑖𝑖2

𝑣𝑣1𝑓𝑓2

Great, but what is the rebound height, ℎ2𝑓𝑓, and the rebound speed (translation and rotational)?! How do they 
relate to the rebound angle or the restitution coefficient?

𝐾𝐾𝐸𝐸1𝑖𝑖 + 𝑃𝑃𝐸𝐸1𝑖𝑖 = 𝐾𝐾𝐸𝐸1𝑓𝑓 + 𝑃𝑃𝐸𝐸1𝑓𝑓 𝐾𝐾𝐸𝐸2𝑖𝑖 + 𝑃𝑃𝐸𝐸2𝑖𝑖 = 𝐾𝐾𝐸𝐸2𝑓𝑓 + 𝑃𝑃𝐸𝐸2𝑓𝑓
𝑃𝑃𝐸𝐸1𝑖𝑖 = 𝐾𝐾𝐸𝐸1𝑓𝑓 𝐾𝐾𝐸𝐸2𝑖𝑖 = 𝑃𝑃𝐸𝐸2𝑓𝑓

𝑚𝑚𝑚𝑚ℎ1𝑖𝑖 =
1
2
𝐼𝐼𝜔𝜔1𝑓𝑓2

1
2
𝐼𝐼𝜔𝜔2𝑖𝑖

2 = 𝑚𝑚𝑚𝑚ℎ2𝑓𝑓

𝐼𝐼 =
2𝑚𝑚𝑚𝑚ℎ1𝑖𝑖
𝜔𝜔1𝑓𝑓2

𝐼𝐼 =
2𝑚𝑚𝑚𝑚ℎ2𝑓𝑓
𝜔𝜔2𝑖𝑖
2



Restitution Coefficient

Assuming no mass is transferred 
during the collision, the 
restitution coefficient is given by:

𝑒𝑒 =
∫𝑅𝑅 𝑑𝑑𝑑𝑑
∫𝑃𝑃 𝑑𝑑𝑑𝑑

=
𝑣𝑣𝐵𝐵𝐵 − 𝑣𝑣𝐴𝐴𝐴
𝑣𝑣𝐴𝐴𝐴 − 𝑣𝑣𝐵𝐵𝐵

Elastic Impact 𝑒𝑒 = 1

Inelastic Impact 0 < 𝑒𝑒 < 1

Plastic Impact 𝑒𝑒 = 0

We will see later how this directly 
relates to energy and efficiency!



Working the Problem (continued)

Assuming the rebound surface is fixed and does not move, 

𝑣𝑣𝐵𝐵𝐵 = 𝑣𝑣𝐵𝐵𝐵 = 0

The rebound coefficient becomes,
𝑒𝑒 =

𝑣𝑣𝐵𝐵𝐵 − 𝑣𝑣𝐴𝐴𝐴
𝑣𝑣𝐴𝐴𝐴 − 𝑣𝑣𝐵𝐵𝐵

=
−𝑣𝑣𝐴𝐴𝐴
𝑣𝑣𝐴𝐴𝐴

Since the pendulum swings to the left before impact, 𝑣𝑣𝐴𝐴𝐴 is negative, and the coefficient is positive.

Recalling the relationship, recognizing the ratio of velocity after/before, and squaring the coefficient,

ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖2

𝜔𝜔1𝑓𝑓2
=
𝑣𝑣2𝑖𝑖2

𝑣𝑣1𝑓𝑓2
= 𝑒𝑒2

Yeah, okay but what about the angle?



Working the Problem (continued)

By property of cosine, the rebound angle can relate to the release 
height and rebound height,

𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 =
ℎ1𝑖𝑖 − ℎ2𝑓𝑓

ℎ1𝑖𝑖
= 1 −

ℎ2𝑓𝑓
ℎ1𝑖𝑖

Or, rearranging for a ratio of the rebound height to initial height, 
ℎ2𝑓𝑓
ℎ1𝑖𝑖

= 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2

Now, relating back...

1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 =
ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖2

𝜔𝜔1𝑓𝑓2
=
𝑣𝑣2𝑖𝑖2

𝑣𝑣1𝑓𝑓2
= 𝑒𝑒2

To solve the problem statement,

𝜃𝜃2 = arccos 1 − 𝑒𝑒2



Identifying Relationships

Consider how gravitational potential energy is proportional to displacement and how kinetic energy is proportional to velocity squared:

𝑃𝑃𝐸𝐸𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 = 𝑚𝑚𝑚𝑚𝑚 𝐾𝐾𝐾𝐾 = 1
2
𝑚𝑚𝑣𝑣2 = 1

2
𝐼𝐼𝜔𝜔2

The ratio of potential energy after rebound to before is,
𝑚𝑚𝑚𝑚ℎ2𝑓𝑓
𝑚𝑚𝑚𝑚ℎ1𝑖𝑖

=
ℎ2𝑓𝑓
ℎ1𝑖𝑖

And the ratio of kinetic energy after rebound to before is,
1
2 𝐼𝐼𝜔𝜔2𝑖𝑖

2

1
2 𝐼𝐼𝜔𝜔1𝑓𝑓

2
=
𝜔𝜔2𝑖𝑖2

𝜔𝜔1𝑓𝑓2

Then if the ratio of energy out to energy in is the efficiency, 𝜀𝜀, then,

𝜀𝜀 =
ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖2

𝜔𝜔1𝑓𝑓2

So now,

1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 =
ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖2

𝜔𝜔1𝑓𝑓2
=
𝑣𝑣2𝑖𝑖2

𝑣𝑣1𝑓𝑓2
= 𝑒𝑒2 = 𝜀𝜀



Identifying Relationships

Let’s reexplore this relationship one last time,

1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 =
ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖2

𝜔𝜔1𝑓𝑓2
=
𝑣𝑣2𝑖𝑖2

𝑣𝑣1𝑓𝑓2
= 𝑒𝑒2 = 𝜀𝜀

If, 
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 = 1 − 𝑒𝑒2 = 1 − 𝜀𝜀

And since 𝜀𝜀 is the efficiency, then 1 − 𝜀𝜀 must be the inefficiency! Let’s call it 𝜉𝜉. 

Then, in complete summary:

1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 =
ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖2

𝜔𝜔1𝑓𝑓2
=
𝑣𝑣2𝑖𝑖2

𝑣𝑣1𝑓𝑓2
= 𝑒𝑒2 = 𝜀𝜀 = 1 − 𝜉𝜉

And,
𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 = 𝜉𝜉 = 1 − 𝑒𝑒2



Energy Loss in a Rebound Pendulum

▪ Having shown how the restitution coefficient 
relates to energy and efficiency, consider the 
three forms of collisions:

▪ Elastic (Energy Conserved)
ℎ𝑓𝑓 = ℎ𝑖𝑖 ; 𝜃𝜃𝑓𝑓 = 𝜃𝜃𝑖𝑖

▪ Inelastic (Energy Loss)
ℎ𝑓𝑓 < ℎ𝑖𝑖 ; 𝜃𝜃𝑓𝑓 < 𝜃𝜃𝑖𝑖

▪ Plastic (Energy Absorbed)
ℎ𝑓𝑓 = 0 ; 𝜃𝜃𝑓𝑓 = 0

▪ For extreme cases, 𝑒𝑒 = 𝜀𝜀, though in general,

𝑒𝑒2 = 𝜀𝜀



Practical Measures of Energy Loss

▪ Inelastic Collision (Energy Loss)

𝐾𝐾𝐸𝐸𝑖𝑖 + 𝑃𝑃𝐸𝐸𝑖𝑖 + 𝑊𝑊𝑛𝑛𝑛𝑛 = 𝐾𝐾𝐸𝐸𝑓𝑓 + 𝑃𝑃𝐸𝐸𝑓𝑓

▪ Energy leaves system and is not accounted for (heat, friction, 
drag, sound, deformations)

▪ In kinematics, energy losses are often ignored (and offer a 
reasonable approximation). 

▪ Hard to measure energy losses in collisions?



Practical Measures of Energy Loss

▪ Gravity is a conservative force, so the path does not affect the work done. Differences in height 
and potential are not due to a loss of gravity or mass, so the energy is lost elsewhere.

▪ However, air resistance from drag forces and rotational resistance from axel friction depend on 
path and are non-conservative. 
– For “large” objects: 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 = 1

2
𝐶𝐶𝐶𝐶𝐶𝐶𝑣𝑣2𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

– For “small” objects (Stokes’ Law): 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 6𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋𝜋
– 𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝜇𝜇𝑘𝑘𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚

▪ Other forms of energy are also released (heat, sound, sometimes light).
𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 = 𝑚𝑚𝑚𝑚Δ𝑇𝑇

𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
𝑝𝑝2

𝜌𝜌𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
2𝜋𝜋𝑟𝑟2 Δ𝑡𝑡

𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 = 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑊𝑊𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑊𝑊𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑊𝑊ℎ𝑒𝑒𝑒𝑒𝑒𝑒 + 𝑊𝑊𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 𝑊𝑊𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙

▪ Of course, the non-conservative work is simply the energy lost by the system. But how could it be 
measured?



Practical Measurements of Energy Loss

Energy Loss to Drag
• Measure the inbound and outbound 

velocities (translational and rotational) to 
evaluate kinetic energy loss

• Use measured speeds to estimate drag 
forces and energy loss (compare with ideal 
speeds)

Energy Loss to Sound
• Measure sound intensity to estimate 

acoustic energy loss

Energy Loss to Heat
• Measure heat signature to estimate thermal 

energy loss

▪ Measure initial and rebound 
angles to evaluate net energy 
loss

▪ Measure the initial and rebound 
heights to evaluate net energy 
loss

▪ Compare total energy loss with 
energy exchanged (energy 
audit)



Other Analogies (the trivial)

Consider dropping a ball from rest at some height. As it 
collides with the ground and rebounds to some height, the 
velocity with which is impacts the ground is

𝑣𝑣𝑖𝑖 = 2𝑔𝑔ℎ𝑖𝑖

And the height to which it rebounds depends on the rebound 
velocity

𝑣𝑣𝑓𝑓 = 2𝑔𝑔ℎ𝑓𝑓

Which both the ratio of velocities and ratio of heights are 
related to the restitution coefficient as:

𝑒𝑒 =
𝑣𝑣𝑓𝑓
𝑣𝑣𝑖𝑖

=
ℎ𝑓𝑓
ℎ𝑖𝑖



Other Analogies (the insightful) 

Consider the relationship of head loss (ℎ𝑜𝑜 − ℎ𝑐𝑐) in vertical flow out 
of a tank. The ideal velocity in the plane of the vena contracta is

𝑣𝑣𝑜𝑜 = 2𝑔𝑔ℎ𝑜𝑜

And the actual velocity in the plane of the vena contracta is

𝑣𝑣𝑐𝑐 = 2𝑔𝑔ℎ𝑐𝑐

Such that the ratio of these velocities is known as the coefficient of 
velocity!

𝐶𝐶 =
𝑣𝑣𝑐𝑐
𝑣𝑣𝑜𝑜

=
ℎ𝑐𝑐
ℎ𝑜𝑜

This coefficient is a fluid analogue to the restitution coefficient!

𝑒𝑒 =
𝑣𝑣𝑓𝑓
𝑣𝑣𝑖𝑖

=
ℎ𝑓𝑓
ℎ𝑖𝑖



Other Analogies (the invalid)

Consider pushing a block along a surface. 

If the force is applied purely horizontally, 
then the whole of the force contributes to 
motion along the surface – doing work!

If the force is applied at an angle, then only 
its horizontal component contributes to 
moving the block.

If the force is applied vertically, then the 
block will never move, and no work is done.

𝜃𝜃



Other Analogies (the invalid)

If the force is applied at 45° then half of the force should be 
productive and the other half should be useless.

Then, blindly applying the analogy...

𝜀𝜀 = 1 − cos𝜃𝜃

But,

𝜀𝜀 = 1 − cos 45° = 0.293

So, what gives?... Well, if 𝜃𝜃 = 0, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 1, and 𝜀𝜀 = 0! The 
opposite should be true!

Instead, if we let,
𝜀𝜀 = cos2 𝜃𝜃

We get a consistent solution! This is interesting to me!

𝜃𝜃



Conclusion

Demonstrated:

• Relationship between the restitution coefficient, efficiency, rebound angle, and the ratios of 
height and velocity squared.

𝑒𝑒2 = 𝜀𝜀 = 1 − 𝜉𝜉 = 1 − 𝑐𝑐𝑐𝑐𝑐𝑐𝜃𝜃2 =
ℎ2𝑓𝑓
ℎ1𝑖𝑖

=
𝜔𝜔2𝑖𝑖
2

𝜔𝜔1𝑓𝑓2
=
𝑣𝑣2𝑖𝑖2

𝑣𝑣1𝑓𝑓2

• Three (four?) simple ways to measure efficiency/inefficiency and restitution coefficient.

• Three not-so-simple ways to measure energy loss to compare with inefficiency.

The bridge between theory 
and measurement!



Conclusion

Future Work / Ideas:

• Use materials with known coefficients to predict/measure/compare results.

• Test length as a factor. Galileo showed that the oscillation frequency of a pendulum 

depends does not depend on mass though it does depend on length. 𝑓𝑓 = 𝑔𝑔
𝑙𝑙

• Does the shape of the pendulum matter? Or does it?

• How many times does it rebound before falling below a specific angle?

• Is it possible to determine and validate which form of energy loss is dominant?

Material Restitution Coefficient

Steel 0.9

Rubber 0.8

Wood 0.5

Clay 0.0


	The Rebound Pendulum: �Energy Dissipation in Classical Systems
	Abstract
	Outline
	Problem Statement
	Motivating the Problem
	Motivating the Problem (w/ History)
	Assumptions
	Working the Problem
	Restitution Coefficient
	Working the Problem (continued)
	Working the Problem (continued)
	Identifying Relationships
	Identifying Relationships
	Energy Loss in a Rebound Pendulum
	Practical Measures of Energy Loss
	Practical Measures of Energy Loss
	Practical Measurements of Energy Loss
	Other Analogies (the trivial)
	Other Analogies (the insightful) 
	Other Analogies (the invalid)
	Other Analogies (the invalid)
	Conclusion
	Conclusion

