Inferential Dynamics

Truth as a Stable Attractor of Reason

By: Mr. Cole Prather

Oct 7th, 2025

Outline

- Motion, Stability, and Feedback
- Examples of Feedback Systems
- Language of Stability
- Mathematics of Stability
- Visualizing Stability
- Forms of Motion and Modes of Inference
- Inference as a Dynamical System
- Truth as a Stable Attractor
- Comparing Modes of Inferences
- Lines of Reasoning and Critical Path
- Summary and Conclusion
- Discussion and Questions

"Since nature is a principle of *motion and change*, and since our inquiry is about nature, we must not overlook the question of what motion is. For without understanding motion, we could not understand nature." – **Aristotle**

Motion

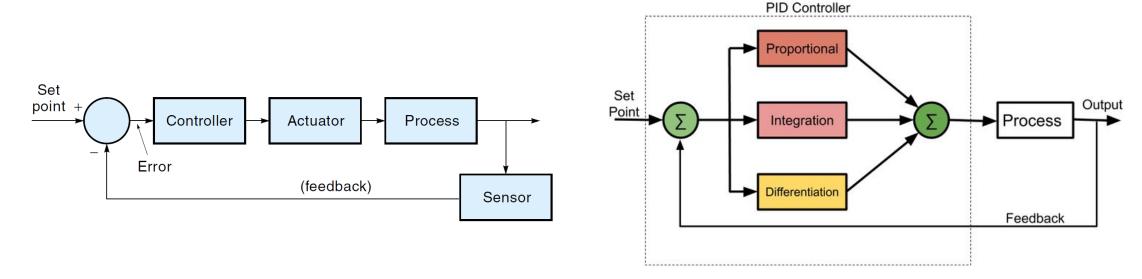
Question:

Why do some motions settle down, while others escalate, and some just continue as they are?

Aristotle: Constant Force = Constant Motion

Galileo: Constant Force = Constant Acceleration

• Forces are not needed to maintain motion, only to change it.


Stability

- No forces = no change in motion (equilibrium)
 - Static vs Dynamic Equilibrium
- Forces cause change, and require energy
- Systems often tend toward low energy states
- Some systems can achieve other bounded states given enough energy, and others spiral out of control
- Stability is the tendency toward equilibrium
- Feedback adjusts motion based on error

Feedback

Types of Feedback:

- Stable Convergent Negative Feedback
- Unstable Divergent Positive Feedback
- Neutral Oscillating Neutral Feedback

Examples of Feedback Systems

Convergent Systems:

- Suspension systems, spring-mass-damper
- PID-controlled actuators, negative feedback amplifiers
- Planetary orbits (energy wells), Lagrange points (local minima)
- *Hopfield networks and Boltzmann machines
- Neural networks, pattern recognition, and machine learning
- Homeostasis (body temp, glycolysis, pH) and protein folding
- Thermodynamic cooling laws and heat exchangers (thermal gradients)
- Iterative root finding methods

Examples of Feedback Systems

Divergent Systems:

- Inverted pendulum (without control)
- Positive-feedback amplifiers
- Fire ignition, combustion, diesel engine runaway, supercritical reactions
- Unbounded weight updates in machine learning
- Population explosion (exponential versus logistic)
- Speculative markets, bubble feedback loops

Examples of Feedback Systems

Neutral Systems:

- Ideal pendulum, frictionless oscillator
- Ideal Keplerian planetary orbit
- LC circuits without resistance
- Pure imaginary eigenvalues, ideal center
- Circular reasoning loops

Mathematics of Stability

Classical Mechanics and Differential Equations

• Classic damped harmonic oscillator equation:

$$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$$

- First term = Restoring Force
- Second term = Damping (Feedback)
- Third term =
- The coefficients determine whether motion converges, diverges, or oscillates.
- Classic damped free harmonic oscillator solution:

$$x(t) = e^{\lambda t} (C_1 \cos \omega_d t + C_2 \sin \omega_d t)$$

- Stable Decay: $Re(\lambda) < 0$
- Unstable Growth: $Re(\lambda) > 0$
- Neutral Oscillation: $Re(\lambda) = 0$
- Formalized by Maxwell (1868) and Lyapunov (1892)

Mathematics of Stability

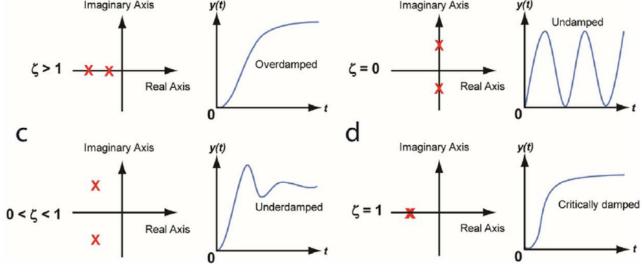
Linearized Systems and Matrices

• Classic damped harmonic oscillator as a matrix:

$$\dot{x} = Ax$$
, $A = \begin{bmatrix} 0 & 1 \\ -\omega_n^2 & -2\zeta\omega_n \end{bmatrix}$

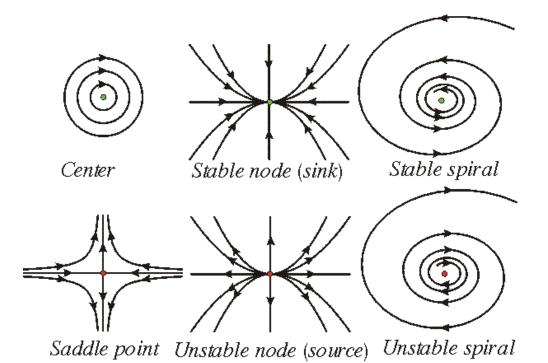
General solution:

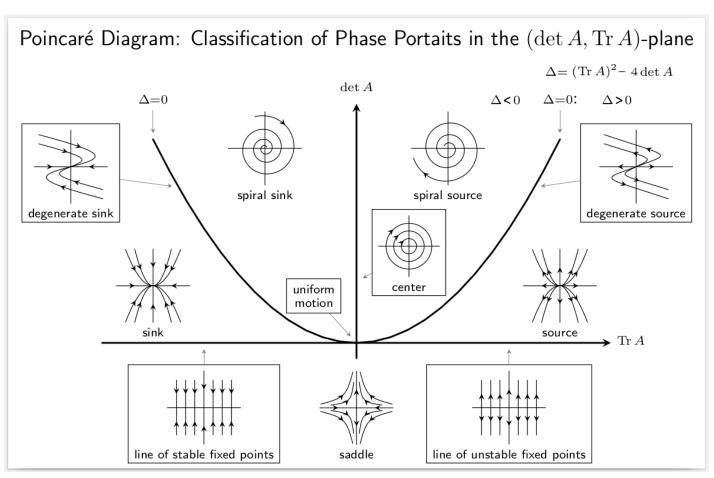
$$x(t) = e^{At}x_0 = \Sigma e^{\lambda_i t}v_i$$


Mathematics of Stability

Linearized Systems and Matrices

- Has eigenvalues $\lambda_{1,2}$ (for a 2x2 matrix) with Re/Im
- Each eigenvalue determines whether that axis attracts or repels trajectories


$$A\nu = \lambda\nu$$


- Stable Decay: $Re(\lambda) < 0$
- Unstable Growth: $Re(\lambda) > 0$
- Neutral Oscillation: $Im(\lambda) \neq 0$ 0<5<1

Visualizing Stability

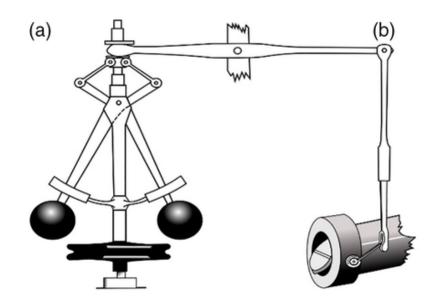
Phase Portraits

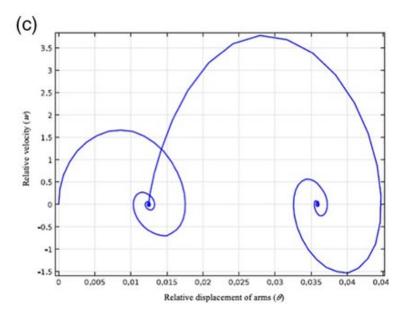
Language of Stability

Category	Canon Term	Math Form	Behavior	Example	
Oscillatory	Harmonic Oscillator	$\ddot{x} + \omega_n^2 x = 0$	Periodic motion about equilibrium	Mass-spring, LC circuit	
	Damped Oscillator	$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = 0$	Oscillation with decaying amplitude	Suspension, RLC circuit	
	Driven/Forced Oscillator	$\ddot{x} + 2\zeta\omega_n\dot{x} + \omega_n^2x = F(t)$	Oscillation with external forcing; may resonate	Speaker diaphragm	
Aperiodic	Overdamped	$\zeta > 1 o$ two real negative eigenvalues	Monotonic return to equilibrium	Door closer	
	Critically Damped	$\zeta = 1$	Fastest non-oscillatory return to equilibrium	Seismograph damper	
	Unstable	$Re(\lambda) > 0$	Exponential divergence	Thermal runaway, population explosion	

- Oscillatory vs aperiodic describes **form of motion** (harmonic, damped, overdamped)
- Stable vs unstable describes **direction of evolution** (toward/away from equilibrium)
- Free vs forced describes **source of excitation** (natural or driven)

Language of Stability


Concept	Canon Definition	Signature	Stability Type	Example	
Attractor Stable Equilibrium	Small disturbances decay over time	$Re(\lambda) < 0$	Asymptotically Stable	Sink or stable spiral	
Repulsor Unstable Equilibrium	Small disturbances grow over time	$Re(\lambda) > 0$	Unstable	Source or unstable spiral	
Center Neutral Equilibrium	Disturbances neither grow nor decay	$Re(\lambda) = 0$	Marginally Stable	Closed orbit	
Saddle Point	Stable in one direction, unstable in the other	Mixed signs	Conditionally Stable	Saddle lines	


- These are the fixed-point geometries in phase portraits
- Each corresponds to a distinct pattern of eigenvalues

Four Modes of Motion

From James Clerk Maxwell's On Governors (1868)

- Stable decay (damped motion)
- Unstable growth (runaway motion)
- Stable oscillation (neutral, periodic)
- Unstable oscillation (growing oscillations)

Four Modes of Inference

Modus Ponens (MP)

- If P then Q; P holds, so Q follows.
- Valid, soundly argues sufficiency

Affirming the Consequent (AC):

- If P then Q; Q holds, so P must hold.
- Invalid, fallaciously argues sufficiency

Modus Tollens (MT):

- If P then Q; Q does not hold, so P cannot hold.
- Valid, soundly argues necessity

Denying the Antecedent (DA):

- If P then Q; P does not hold, so Q cannot hold.
- Invalid, fallaciously argues necessity

Comparing Modes of Inference

Ethical Skeptic's Map of Inference

Modes of Inference	lcon modus	Bootstrap Strength fiduciam	to the Presence praesens	to the Suspension indifferens	oject or Stat to the Absence absens	Transfer Strength	Syllo to the Negation tollens	to the Affirmation ponens	Probative Strength probantem	ex ante Reliance praedicere	a priori Reliance verisimile	Example
Falsification	AANA	100	②	N/A	3	②	②	3		None	Low	All crows are black
Deduction	KNKK	95	②	Ø	8	②	8	②	Ø	Low	Low	All but one has an alibi
Consilient Induction	X/X	90	②	②	A	②	8	②	Po	oper Dem Moderate		Man is the principle cause of climate change
Heteroduction		80	A	Ø	3	A	Debunking	Ø	②	High	Low	An anomalous creature exists
Retroduction/ Concomitance	RULE	75	<u> </u>	②	S SHEMPEL'S Paradox	A	3	<u> </u>	②	Moderate to High	Low	Evolution
Linear Induction	LA LA	65	A	Ø	⊗ Hemp	A	8	A	A	High	High	Abiogenesis
Abduction	Ā.	55	<u> </u>	A	3	<u> </u>	Null Hypothesis	À	Ne	elsonian I	nference High	Chronic Fatigue Syndrome does not exist
Panduction/ Debunking	A WWA	20	3	3	3	3	8	3	8	8	3	Nihilistic atheism
Revelation	€¥	10	8	3	3	3	8	3	3	8	N/A	Fundamentalism/ Mysticism
Critical Thinking	(11)	10	Religion	<u> </u>	cial Skeptici	3	Debunking	3	8	③	3	Cynicism/ Methodical Doubt

Inference Matrix

	Consequent					
True Modus Ponens (MP) Logically Valid Unstable Attractor Negative Feedback Argues Sufficiency Inferential Strength: 0.6	True	False				
	Logically Valid Unstable Attractor Negative Feedback Argues Sufficiency	Denying the Antecedent (DA) Logically Invalid (Fallacy) Unstable Repulsor Positive Feedback Falsely Argues Necessity Inferential Strength: 0.1				
False	Affirming the Consequent (AC) Logically Invalid (Fallacy) Stable Repulsor Positive Feedback Falsely Argues Sufficiency Inferential Strength: 0.3	Modus Tollens (MT) Logically Valid Stable Attractor Negative Feedback Argues Necessity Inferential Strength: 0.9				

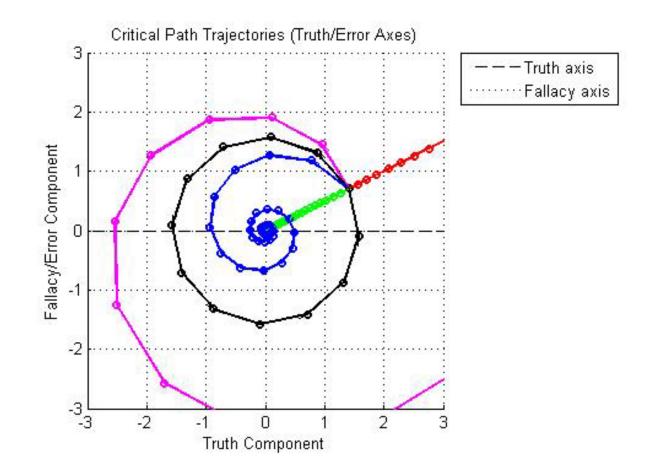
Inference as a Dynamic System

• Can inference be described as a dynamical system?

Inference as a Dynamic System

Mathematically, each inference mode can be expressed as an operator on the reasoning state. A simple family is the scaled rotation

$$T(\rho, \theta) = \begin{bmatrix} \rho \cos \theta & -\rho \sin \theta \\ \rho \sin \theta & \rho \cos \theta \end{bmatrix}$$


which updates the reasoning vector $x_{\{t+1\}} = T(\rho, \theta)x_t$. Its eigenvalues are

$$\lambda = \rho e^{\pm i\theta}$$
.

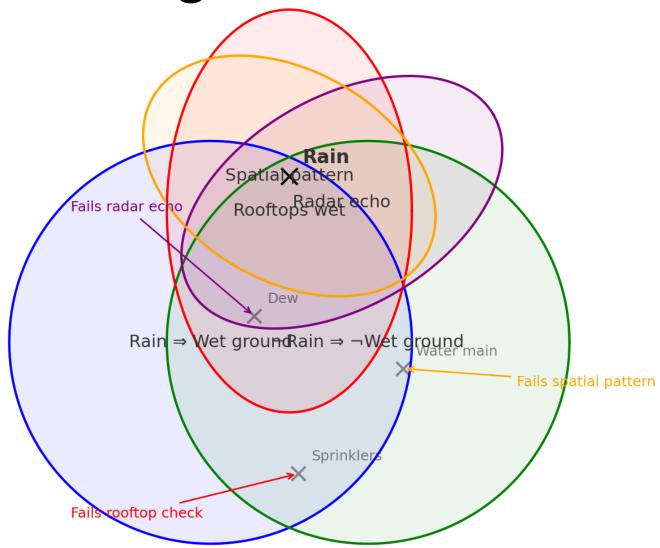
Inference as a Dynamic System

- Valid Inference (MP, MT):
 - Attractor
 - Sink
 - Negative feedback
 - Damping
 - Convergence
- Invalid Inference (DA, AC):
 - Repulsor
 - Source
 - Positive Feedback
 - Runaway
 - Divergence
- Circular Inference
 - Neutral Orbit (Center)
- Selective Inference
 - Saddle Point

Truth as the Stable Attractor of Reasoning

- The rational diagonal (MP, MT) functions as negative feedback.
 Valid inferences damp error and converge reasoning toward stability.
 - Rational propaganda (Huxley)
- The **irrational diagonal** (AC, DA) functions as positive feedback. Fallacies amplify error, producing divergence or oscillation.
 - Irrational propaganda (Huxley)

• Fallacies push trajectories away; valid inference pulls trajectories in.


Geometry of Inference

• "For the Greeks, it wasn't enough for math to just be useful. They wanted geometry to address deeply philosophical questions..."

- ... [they] had a culture of antagonistic debate where the very nature of absolute truth was hotly contested."
 - Ben Syverson

https://www.youtube.com/watch?v=M-MgQC6z3VU

Line of Reasoning and Critical Path

Summary

Posture:

- Epistemic humility (be willing to be wrong)
- Deontological doubt (moral duty to avoid false positives)
- Ontological confidence (reality has structure, which can be probed).

Aim:

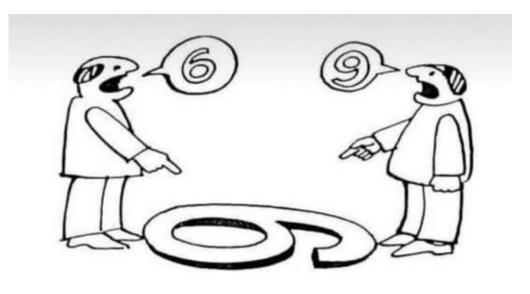
Seek truth through coherence and invariance rather than stacking "facts."

Ethic:

• Prefer a non-answer to a confidently false answer. Minimize doubt; don't enshrine beliefs.

Thesis:

- Truth is what survives inversion; in dynamical terms, it behaves like an attractor.
- A good model converges toward equilibrium under perturbation and feedback.


Historical Anchors

Historical Anchors:

- Aristotle on motion, necessity/sufficiency, and falsification.
 - Physics and Posterior Analytics (350 BCE).
- Galileo on inertia and falsification of Aristotelian motion.
 - Dialogue (1632), Two New Sciences (1638).
- Maxwell's On Governors as the birth of control theory.
 - On Governors (1868)
- Peirce: Truth as the stable outcome of inquiry.
 - "How to Make Our Ideas Clear," Popular Science Monthly (1878).

Conclusion

- "You know, nature does not contradict itself." Viktor Blåsjö
- Don't fear being wrong, fear not being informative.
- Error is acceptable; fragility is not.
- Belief insists. Truth persists.

tRuTh Is ReLaTiVe, EvErYtHiNg DePeNdS oN yOuR pOiNt Of ViEw

Someone drew that number. This someone knows if it's a 9 or a 6. Thus, there exists a truth.

Discussion and Questions

- Thoughts?
- Comments?
- Questions?