Gravitational Radiation: Maxwell-Heaviside Formulation

Author: Cole Prather

Mentor: Dr. Weldon Wilson

Outline

- Introduction
- Methodology
- Results
 - Field Equations, Potentials, and Wave Equations
 - Retarded Potentials and Fields
 - Liénard–Wiechert Potentials and Fields
 - *Lorentz Force
 - Poynting Vector
 - Gravitational Fields
 - Gravitational Radiation
- Conclusion and Future Work

Introduction

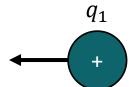
• Why reformulate gravity?

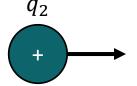
Introduction

- Why reformulate gravity?
- Why not?

Coulomb's Force Law

$$\mathbf{F} = k \frac{q_1 q_2}{R^2} \widehat{\mathbf{R}}$$





Newton's Force Law

$$\mathbf{F} = -G \, \frac{m_1 m_2}{R^2} \, \widehat{\mathbf{R}}$$

- Gravity as an analogy to electromagnetism
 - James Maxwell
 - Oliver Heaviside
- Gravitational fields and waves
- Negative field energy
- Radiation
- What about general relativity?
 - Cannot localize gravity

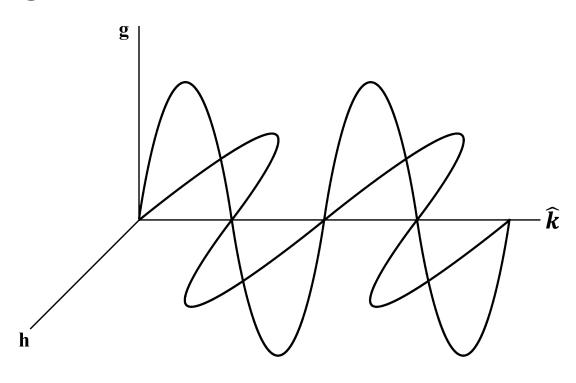


Figure 1: A gravitational wave.

- Aristotelian (gravity)
- Ptolemaic (geocentrism)
- Copernican (heliocentrism w/ nested circles)
- Keplerian (eccentric orbits)
- Galilean (tides and phase cycles)
- Newtonian (forces)

• Einsteinian (spacetime curvature)

- Aristotelian (gravity)
- Ptolemaic (geocentrism)
- Copernican (heliocentrism w/ nested circles)
- Keplerian (eccentric orbits)
- Galilean (tides and phase cycles)
- Newtonian (forces)
- Maxwell-Heaviside? (fields)
- Einsteinian (spacetime curvature)

Methodology

- ... By analogy!
- Field equations → Scalar and vector potentials → Wave equations
- Retarded wave propagation

 Retarded potentials and fields
- Retarded potentials

 Liénard–Wiechert potentials and fields
- Poynting Vector + Liénard–Wiechert Fields → Radiation
- Larmor formula for power radiated

Cole Prather

• Field equations \rightarrow Scalar and vector potentials

$$\nabla \cdot \mathbf{E} = 4\pi \rho_e$$

$$\nabla \times \mathbf{E} = -\frac{1}{c_e} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \frac{1}{c_e} (4\pi \mathbf{J}_e + \frac{\partial \mathbf{E}}{\partial t})$$

• Field equations \rightarrow Scalar and vector potentials

Define:
$$\nabla \cdot \mathbf{E} = 4\pi \rho_{e}$$

$$\nabla \times \mathbf{E} = -\frac{1}{c_{e}} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\nabla \times \mathbf{B} = \frac{1}{c_{e}} (4\pi \mathbf{J}_{e} + \frac{\partial \mathbf{E}}{\partial t})$$

$$\nabla \times \nabla \phi_{e} = 0$$

• Field equations \rightarrow Scalar and vector potentials

Define:
$$\nabla \cdot \boldsymbol{E} = 4\pi \rho_{e}$$

$$\nabla \times \boldsymbol{E} = -\frac{1}{c_{e}} \frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \cdot \boldsymbol{B} = \nabla \cdot (\nabla \times \boldsymbol{A}_{e}) = 0$$

$$\nabla \times \boldsymbol{B} = \frac{1}{c_{e}} (4\pi \boldsymbol{J}_{e} + \frac{\partial \boldsymbol{E}}{\partial t})$$

$$\nabla \times \nabla \phi_{e} = 0$$

Scalar and vector potentials → Wave equations

$$\mathbf{B} = \nabla \times \mathbf{A}_e$$

$$\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}_e) = 0$$

$$\nabla \times \nabla \phi_e = 0$$

$$\mathbf{E} = -\nabla \phi_e - \frac{1}{c_e} \frac{\partial \mathbf{A}_e}{\partial t}$$

Scalar and vector potentials → Wave equations

Back into:

$$B = \nabla \times A_{e}$$

$$\nabla \cdot B = \nabla \cdot (\nabla \times A_{e}) = 0$$

$$\nabla \times V = 0$$

$$\nabla \cdot B = 0$$

$$m{B} =
abla imes m{A}_e$$
 $m{
abla} \cdot m{B} =
abla \cdot (
abla imes m{A}_e) = 0$
 $m{
abla} \cdot m{A}_e = 0$
 $m{E} = -
abla \phi_e - rac{1}{c_o} rac{\partial m{A}_e}{\partial t}$

Back into:

$$\nabla \cdot \mathbf{E} = 4\pi \rho_e$$

$$\nabla \times \mathbf{E} = -\frac{1}{c_e} \frac{\partial \mathbf{B}}{\partial t}$$

$$\nabla \cdot \mathbf{B} = 0$$

$$\Delta \mathbf{B} = \frac{1}{c_e} (4\pi \mathbf{J}_e + \frac{\partial \mathbf{E}}{\partial t})$$

$$\nabla \cdot \mathbf{E} = 4\pi \rho_{e}$$

$$\nabla^{2} \mathbf{A}_{e} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \mathbf{A}_{e}}{\partial t^{2}} = -\frac{4\pi}{c_{e}} \mathbf{J}_{e}$$

$$\nabla^{2} \mathbf{A}_{e} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \mathbf{A}_{e}}{\partial t^{2}} = -4\pi \rho_{e}$$

$$\nabla^{2} \mathbf{\Phi}_{e} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \mathbf{\Phi}_{e}}{\partial t^{2}} = -4\pi \rho_{e}$$

$$\nabla^{2} \mathbf{E} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \mathbf{E}}{\partial t^{2}} = 4\pi (\nabla \rho_{e} + \frac{1}{c_{e}^{2}} \frac{\partial \mathbf{J}_{e}}{\partial t})$$

$$\nabla^{2} \mathbf{B} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \mathbf{B}}{\partial t^{2}} = -\frac{4\pi}{c_{e}} (\nabla \times \mathbf{J}_{e})$$

Retarded wave propagation

retarded potentials and fields

$$A_{e}(\mathbf{r},t) = \frac{1}{c_{e}} \iiint \frac{J_{e}(\mathbf{r}',t-\frac{R}{c_{e}})}{R} dV'$$

$$\phi_{e}(\mathbf{r},t) = \iiint \frac{\rho_{e}(\mathbf{r}',t-\frac{R}{c_{e}})}{R} dV'$$

$$E(\mathbf{r},t) = \iiint \left(\frac{[\rho_{e}]\hat{\mathbf{e}}_{R}}{R^{2}} + \frac{\left[\frac{\partial\rho_{e}}{\partial t}\right]\hat{\mathbf{e}}_{R}}{c_{e}R} - \frac{\left[\frac{\partial J_{e}}{\partial t}\right]}{c_{e}^{2}R}\right) dV'$$

$$B(\mathbf{r},t) = \frac{1}{c_{e}} \iiint \left(\frac{[J_{e}] \times \hat{\mathbf{e}}_{R}}{R^{2}} + \frac{\left[\frac{\partial J_{e}}{\partial t}\right] \times \hat{\mathbf{e}}_{R}}{c_{e}R}\right) dV'$$

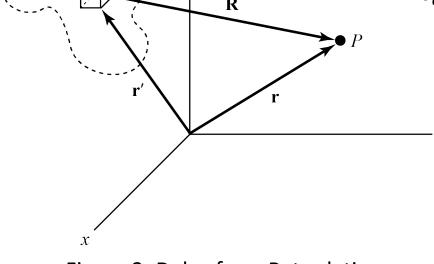


Figure 2: Delay from Retardation.

 $\boldsymbol{B}(\boldsymbol{r},t) = \boldsymbol{B}_v + \boldsymbol{B}_a$

 $B_n = \beta \times E_n$ & $B_a = \widehat{R} \times E_a$

Retarded potentials

 Liénard–Wiechert potentials and fields

$$\phi_{e}(\mathbf{r},t) = \left[\frac{e}{R(1-\widehat{R}\cdot\boldsymbol{\beta})}\right]\Big|_{t'=t-\frac{R}{c_{e}}} \qquad \boldsymbol{\beta} = \frac{\boldsymbol{v}}{c_{e}}$$

$$A_{e}(\mathbf{r},t) = \beta\phi_{e}(\mathbf{r},t)$$

$$A_{e}(\mathbf{r},t) = \left[\frac{e\boldsymbol{\beta}}{R(1-\widehat{R}\cdot\boldsymbol{\beta})}\right]\Big|_{t'=t-\frac{R}{c_{e}}} \qquad K = (1-\widehat{R}\cdot\boldsymbol{\beta})$$

$$E(\mathbf{r},t) = e\left[\frac{(\widehat{R}-\boldsymbol{\beta})(1-\beta^{2})}{K^{3}R^{2}} + \frac{\widehat{R}\times\left((\widehat{R}-\boldsymbol{\beta})\times\dot{\boldsymbol{\beta}}\right)}{c_{e}K^{3}R}\right]$$

$$E(\mathbf{r},t) = E_{v} + E_{a}$$

$$B(\mathbf{r},t) = e\left[\frac{(\boldsymbol{\beta}\times\widehat{R})(1-\beta^{2})}{K^{3}R^{2}} + \frac{(\dot{\boldsymbol{\beta}}\cdot\widehat{R})(\boldsymbol{\beta}\times\widehat{R})}{c_{e}K^{3}R} + \frac{\dot{\boldsymbol{\beta}}\times\widehat{R}}{c_{e}K^{2}R}\right]$$

Figure 3: Geometry of a Moving Point Mass.

The Poynting vector represents energy flux and is given by:

$$S = \frac{c_e}{4\pi} \mathbf{E} \times \mathbf{B}$$

From the Poynting theorem:

$$\frac{\partial W}{\partial t} + \nabla \cdot S + g \cdot J = \mathbf{0}$$

The velocity fields vary as an inverse-square of distance,

$$E_v, B_v \propto \frac{1}{[R^2]}$$

The acceleration fields vary as an inverse-first-power of distance,

$$E_a, B_a \propto \frac{1}{[R]}$$

So, from the following Poynting vector arrangements,

$$S_{vv} \propto \frac{1}{[R^4]}$$

$$S_{aa} \propto \frac{1}{[R^2]}$$

only accelerated charges can radiate!

Total radiated power can be evaluated as using the Larmor formulae:

$$\frac{dP}{d\Omega} = (\mathbf{S}_{a} \cdot \widehat{\mathbf{R}})R^{2}$$

$$P = \int_{4\pi} \frac{dP}{d\Omega} d\Omega$$

• Retarded fields \rightarrow Present fields

From the figure,

$$\boldsymbol{R}_r = \boldsymbol{R}_{\boldsymbol{p}} + (t - t_r)\boldsymbol{v}$$

where,

$$R_r = (t - t_r)c_e$$

Leads to

$$\boldsymbol{R_p} = R_r(\widehat{\boldsymbol{R}}_r - \boldsymbol{\beta})$$

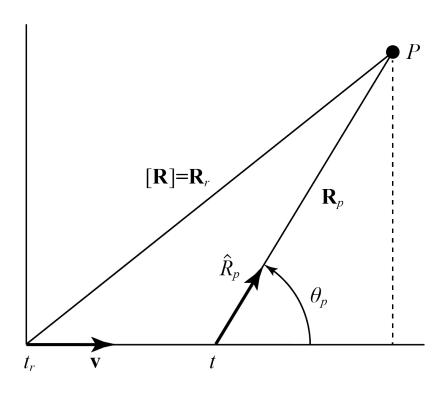


Figure 4: Retarded Position Diagram.

Field Equations

Electromagnetic Field Equations

$$\nabla \cdot \mathbf{E} = 4\pi \rho_e$$

$$\nabla \times \boldsymbol{E} = -\frac{1}{c_e} \frac{\partial \boldsymbol{B}}{\partial t}$$

$$\nabla \cdot \boldsymbol{B} = 0$$

$$\nabla \times \boldsymbol{B} = \frac{1}{c_e} (4\pi \boldsymbol{J}_e + \frac{\partial \boldsymbol{E}}{\partial t})$$

Gravitational Field Equations

$$\nabla \cdot \boldsymbol{g} = -4\pi G \rho_g$$

$$\nabla \times \boldsymbol{g} = -\frac{1}{c_g} \frac{\partial \boldsymbol{h}}{\partial t}$$

$$\nabla \cdot \boldsymbol{h} = 0$$

$$\nabla \times \boldsymbol{h} = \frac{1}{c_g} (-4\pi G \boldsymbol{J}_g + \frac{\partial \boldsymbol{g}}{\partial t})$$

Vector and Scalar Potentials

Define Electromagnetic Potentials

$$B = \nabla \times A_e$$

$$\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}_e) = 0$$

$$\nabla \times \nabla \phi_e = 0$$

$$\mathbf{E} = -\nabla \phi_e - \frac{1}{c_e} \frac{\partial A_e}{\partial t}$$

Define Gravitational Potentials

$$h = \nabla \times A_q$$

$$\nabla \cdot \boldsymbol{h} = \nabla \cdot (\nabla \times \boldsymbol{A}_g) = 0$$

$$\nabla \times \nabla \phi_g = 0$$

$$\boldsymbol{g} = -\nabla \phi_g - \frac{1}{c_g} \frac{\partial \boldsymbol{A}_g}{\partial t}$$

Wave Equations

Electromagnetic Wave Equations

$$\nabla^{2} \boldsymbol{A}_{e} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \boldsymbol{A}_{e}}{\partial t^{2}} = -\frac{4\pi}{c_{e}} \boldsymbol{J}_{e}$$

$$\nabla^{2} \boldsymbol{\phi}_{e} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \boldsymbol{\phi}_{e}}{\partial t^{2}} = -4\pi \rho_{e}$$

$$\nabla^{2} \boldsymbol{E} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \boldsymbol{E}}{\partial t^{2}} = 4\pi (\nabla \rho_{e} + \frac{1}{c_{e}^{2}} \frac{\partial \boldsymbol{J}_{e}}{\partial t})$$

$$\nabla^{2} \boldsymbol{B} - \frac{1}{c_{e}^{2}} \frac{\partial^{2} \boldsymbol{B}}{\partial t^{2}} = -\frac{4\pi}{c_{e}} (\nabla \times \boldsymbol{J}_{e})$$

Gravitational Wave Equations

$$\nabla^{2} \boldsymbol{A}_{g} - \frac{1}{c_{g}^{2}} \frac{\partial^{2} \boldsymbol{A}_{g}}{\partial t^{2}} = \frac{4\pi G}{c_{g}} \boldsymbol{J}_{g}$$

$$\nabla^{2} \boldsymbol{\phi}_{g} - \frac{1}{c_{g}^{2}} \frac{\partial^{2} \boldsymbol{\phi}_{g}}{\partial t^{2}} = 4\pi G \rho_{g}$$

$$\nabla^{2} \boldsymbol{g} - \frac{1}{c_{g}^{2}} \frac{\partial^{2} \boldsymbol{g}}{\partial t^{2}} = -4\pi G (\nabla \rho_{g} + \frac{1}{c_{g}^{2}} \frac{\partial \boldsymbol{J}_{g}}{\partial t})$$

$$\nabla^{2} \boldsymbol{h} - \frac{1}{c_{g}^{2}} \frac{\partial^{2} \boldsymbol{h}}{\partial t^{2}} = \frac{4\pi G}{c_{g}} (\nabla \times \boldsymbol{J}_{g})$$

Retarded Potentials

Retarded EM Potentials

$$A_{e}(\mathbf{r},t) = \frac{1}{c_{e}} \iiint \frac{J_{e}(\mathbf{r}',t-\frac{R}{c_{e}})}{R} dV'$$

$$\phi_e(\mathbf{r},t) = \iiint \frac{\rho_e(\mathbf{r}',t-\frac{R}{c_e})}{R} dV'$$

Retarded Gravitational Potentials

$$A_{g}(\mathbf{r},t) = -\frac{G}{c_{g}} \iiint \frac{J_{g}\left(\mathbf{r}',t - \frac{R}{c_{g}}\right)}{R} dV'$$

$$\phi_g(\mathbf{r},t) = -G \iiint \frac{\rho_g(\mathbf{r}',t-\frac{R}{c_g})}{R} dV'$$

Retarded Fields

Retarded EM Fields

$$\boldsymbol{B}(\boldsymbol{r},t) = \frac{1}{c_e} \iiint \left(\frac{[\boldsymbol{J}_e] \times \hat{\boldsymbol{e}}_R}{R^2} + \frac{\left[\frac{\partial \boldsymbol{J}_e}{\partial t} \right] \times \hat{\boldsymbol{e}}_R}{c_e R} \right) dV$$

Retarded Gravitational Fields

$$\boldsymbol{E}(\boldsymbol{r},t) = \iiint \left(\frac{[\rho_e] \hat{\boldsymbol{e}}_R}{R^2} + \frac{\left[\frac{\partial \rho_e}{\partial t} \right] \hat{\boldsymbol{e}}_R}{c_e R} - \frac{\left[\frac{\partial \boldsymbol{J}_e}{\partial t} \right]}{c_e^2 R} \right) dV' \qquad \boldsymbol{g}(\boldsymbol{r},t) = -G \iiint \left(\frac{[\rho_g] \hat{\boldsymbol{e}}_R}{R^2} + \frac{\left[\frac{\partial \rho_g}{\partial t} \right] \hat{\boldsymbol{e}}_R}{c_g R} - \frac{\left[\frac{\partial \boldsymbol{J}_g}{\partial t} \right]}{c_g^2 R} \right) dV'$$

$$\boldsymbol{B}(\boldsymbol{r},t) = \frac{1}{c_e} \iiint \left(\frac{[\boldsymbol{J}_e] \times \hat{\boldsymbol{e}}_R}{R^2} + \frac{\left[\frac{\partial \boldsymbol{J}_e}{\partial t} \right] \times \hat{\boldsymbol{e}}_R}{c_e R} \right) dV' \qquad \boldsymbol{h}(\boldsymbol{r},t) = -\frac{G}{c_g} \iiint \left(\frac{\left[\boldsymbol{J}_g \right] \times \hat{\boldsymbol{e}}_R}{R^2} + \frac{\left[\frac{\partial \boldsymbol{J}_g}{\partial t} \right] \times \hat{\boldsymbol{e}}_R}{c_g R} \right) dV'$$

Oleg Jefimenko (~ 1960s) & Jose Heras (1994, 2007)

Liénard-Wiechert Potentials

... for Electromagnetism

$\phi_e(\mathbf{r},t) = \left[\frac{e}{R(1 - \widehat{\mathbf{R}} \cdot \boldsymbol{\beta})} \right] \Big|_{t'=t - \frac{R}{c_e}}$

$$A_{e}(\mathbf{r},t) = \left[\frac{e\boldsymbol{\beta}}{R(1-\widehat{\mathbf{R}}\cdot\boldsymbol{\beta})}\right]\Big|_{t'=t-\frac{R}{c_{e}}}$$

... for Gravitation

$$\phi_g(\mathbf{r},t) = \left[-\frac{Gm}{R(1-\widehat{\mathbf{R}}\cdot\boldsymbol{\beta})} \right] \Big|_{t'=t-\frac{R}{c_g}}$$

$$A_{g}(\mathbf{r},t) = \left[-\frac{Gm\boldsymbol{\beta}}{R(1-\widehat{\mathbf{R}}\cdot\boldsymbol{\beta})} \right] \Big|_{t'=t-\frac{R}{c_{g}}}$$

$$A_i(\mathbf{r},t) = \boldsymbol{\beta}\phi_i(\mathbf{r},t)$$

Liénard-Wiechert Fields

... for Electromagnetism

$\mathbf{E} = e \left| \frac{(\widehat{\mathbf{R}} - \boldsymbol{\beta})(1 - \beta^2)}{K^3 R^2} + \frac{\widehat{\mathbf{R}} \times ((\widehat{\mathbf{R}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}})}{C K^3 R} \right|$

$$\boldsymbol{B} = e \left[\frac{\left(\boldsymbol{\beta} \times \widehat{\boldsymbol{R}} \right) (1 - \beta^2)}{K^3 R^2} + \frac{(\dot{\boldsymbol{\beta}} \cdot \widehat{\boldsymbol{R}}) \left(\boldsymbol{\beta} \times \widehat{\boldsymbol{R}} \right)}{c_e K^3 R} + \frac{\dot{\boldsymbol{\beta}} \times \widehat{\boldsymbol{R}}}{c_e K^2 R} \right]$$

... for Gravitation

$$\boldsymbol{g} = -Gm \left[\frac{(\widehat{\boldsymbol{R}} - \boldsymbol{\beta})(1 - \beta^2)}{K^3 R^2} + \frac{\widehat{\boldsymbol{R}} \times \left((\widehat{\boldsymbol{R}} - \boldsymbol{\beta}) \times \dot{\boldsymbol{\beta}} \right)}{c_g K^3 R} \right]$$

$$\boldsymbol{B} = e \left[\frac{\left(\boldsymbol{\beta} \times \widehat{\boldsymbol{R}} \right) (1 - \beta^2)}{K^3 R^2} + \frac{(\dot{\boldsymbol{\beta}} \cdot \widehat{\boldsymbol{R}}) \left(\boldsymbol{\beta} \times \widehat{\boldsymbol{R}} \right)}{c_e K^3 R} + \frac{\dot{\boldsymbol{\beta}} \times \widehat{\boldsymbol{R}}}{c_e K^2 R} \right] \qquad \boldsymbol{h} = -Gm \left[\frac{\left(\boldsymbol{\beta} \times \widehat{\boldsymbol{R}} \right) (1 - \beta^2)}{K^3 R^2} + \frac{(\dot{\boldsymbol{\beta}} \cdot \widehat{\boldsymbol{R}}) \left(\boldsymbol{\beta} \times \widehat{\boldsymbol{R}} \right)}{c_g K^3 R} + \frac{\dot{\boldsymbol{\beta}} \times \widehat{\boldsymbol{R}}}{c_g K^2 R} \right]$$

$$K = (1 - \widehat{R} \cdot \beta)$$

*Lorentz Force

for Electromagnetism	for Gravitation
$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c_e} \times \mathbf{B} \right)$	$\boldsymbol{F} = m \left(\boldsymbol{g} + \frac{\boldsymbol{v}}{c_g} \times \boldsymbol{h} \right)$

*Lorentz Force

... for Electromagnetism

... for Gravitation

$$\mathbf{F} = q \left(\mathbf{E} + \frac{\mathbf{v}}{c_e} \times \mathbf{B} \right)$$

$$\boldsymbol{F} = m \left(\boldsymbol{g} + \frac{\boldsymbol{v}}{c_g} \times \boldsymbol{h} \right)$$

Let,

$$\mathbf{h} = 2c_g \mathbf{\omega}$$

Then,

$$F = mg + 2mv \times \omega \rightarrow F = mg - 2m\omega \times v$$

Where the Coriolis force is defined as:

$$F_{Coriolis} = -2m\omega \times v$$

Now let,

$$\boldsymbol{g} = \boldsymbol{g}_{eff} = (a_f - a_c)\widehat{\boldsymbol{g}}$$

So,

$$F = ma_f - m\omega \times \omega \times r - 2m\omega \times v$$

Poynting Theorem

$$\frac{\partial W}{\partial t} + \nabla \cdot S + g \cdot J = 0$$

$$P_{field} = \frac{\partial \mathbf{W}}{\partial t} + \nabla \cdot \mathbf{S} = -\mathbf{g} \cdot \mathbf{J}$$

Poynting Vector for EM

Poynting Vector for Gravitation

$$S = \frac{c_e}{4\pi} \mathbf{E} \times \mathbf{B}$$

$$S = -\frac{c_g}{4\pi G} \mathbf{g} \times \mathbf{h}$$

Fields for Uniform Motion

... for Electromagnetism

$$E_{v}(R_{P},t) = \frac{e(1-\beta^{2})\widehat{R}_{P}}{R_{P}^{2}(1-\beta^{2}\sin^{2}\theta_{P})^{3/2}}$$

$$\boldsymbol{B}_{\boldsymbol{v}}(\boldsymbol{R}_{\boldsymbol{P}},t) = \boldsymbol{\beta} \times \boldsymbol{E}_{\boldsymbol{v}}$$

... for Gravitation

$$g_v(\mathbf{R}_P, t) = -\frac{Gm(1 - \beta^2)\widehat{\mathbf{R}}_P}{R_P^2(1 - \beta^2\sin^2\theta_P)^{3/2}}$$

$$\boldsymbol{h}_{\boldsymbol{v}}(\boldsymbol{R}_{\boldsymbol{P}},t) = \boldsymbol{\beta} \times \boldsymbol{g}_{\boldsymbol{v}}$$

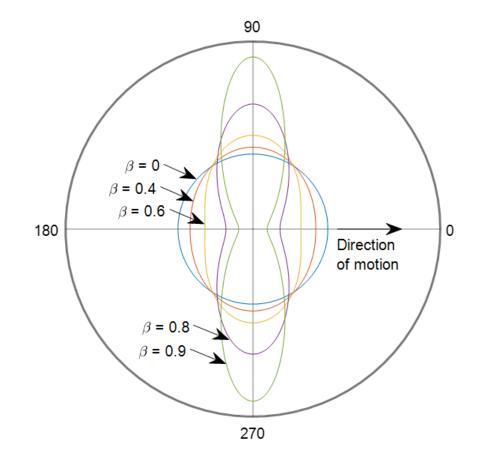
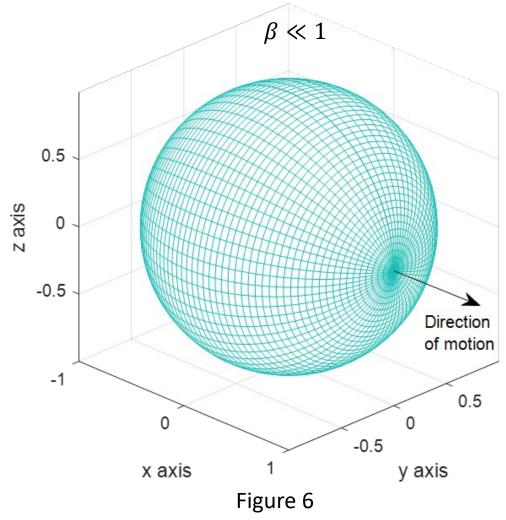


Figure 5

Fields for Uniform Motion (continued)



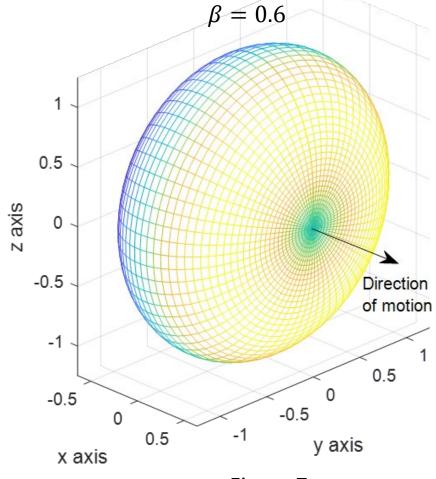


Figure 7

Radiation from Acceleration at Low Velocities

... for Electromagnetism

$$\frac{dP}{d\Omega} = (\mathbf{S}_{a} \cdot \widehat{\mathbf{R}})R^{2} = \frac{e^{2}a^{2}}{4\pi c_{e}^{3}}\sin^{2}\theta$$
$$P = \frac{2e^{2}a^{2}}{3c_{e}^{3}}$$

... for Gravitation

$$\frac{dP}{d\Omega} = (S_a \cdot \widehat{R})R^2 = \frac{-Gm^2a^2}{4\pi c_g^3} \sin^2 \theta$$
$$P = -\frac{2Gm^2a^2}{3c_g^3}$$

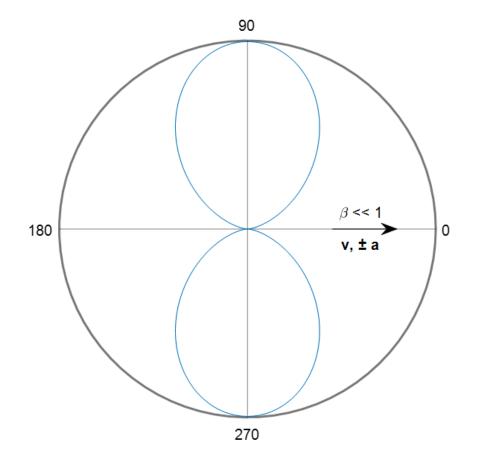


Figure 8

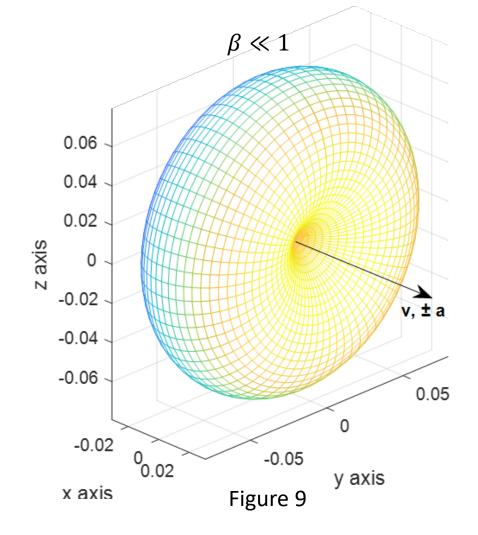
Radiation from Acceleration at Low Velocities

... for Electromagnetism

$$\frac{dP}{d\Omega} = (\mathbf{S}_a \cdot \widehat{\mathbf{R}})R^2 = \frac{e^2 a^2}{4\pi c_e^3} \sin^2 \theta$$
$$P = \frac{2e^2 a^2}{3c_e^3}$$

... for Gravitation

$$\frac{dP}{d\Omega} = (S_a \cdot \widehat{R})R^2 = \frac{-Gm^2a^2}{4\pi c_g^3} \sin^2 \theta$$
$$P = -\frac{2Gm^2a^2}{3c_g^3}$$



Gravitational Radiation from a Mass With Collinear Velocity and Acceleration

$$\frac{dP}{d\Omega} = \frac{-Gm^2a^2\sin^2\theta}{4\pi c_g^3(1 - \beta\cos\theta)^5}$$

$$P = -\frac{2Gm^2a^2}{3c_g^3(1-\beta^2)^3}$$

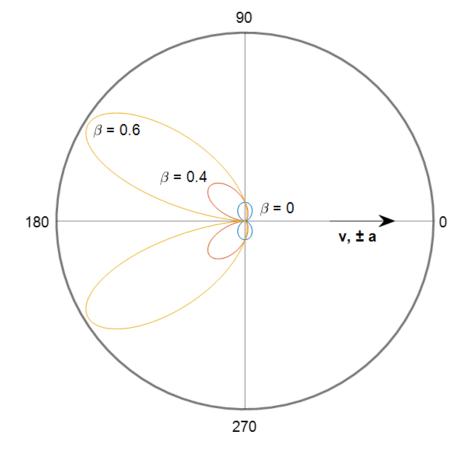
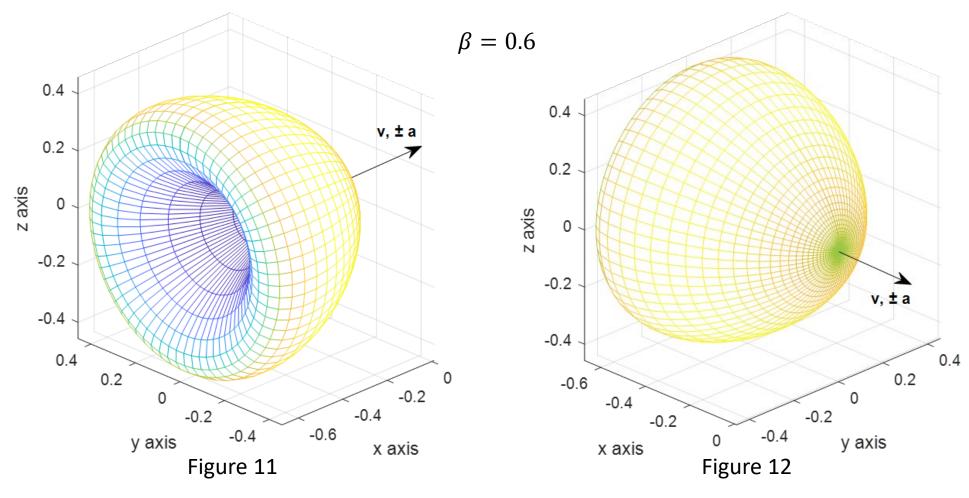


Figure 10

Gravitational Radiation from a Mass With Collinear Velocity and Acceleration (cont.)



Radiation by Collinear Velocity & Acceleration

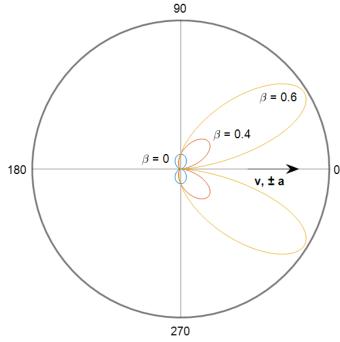


Figure 13

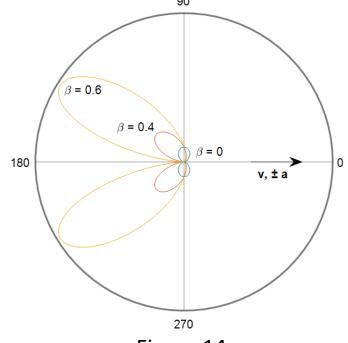


Figure 14

... for Electromagnetism

$$\frac{dP}{d\Omega} = \frac{e^2 a^2 \sin^2 \theta}{4\pi c_e^3 (1 - \beta \cos \theta)^5} \quad \Rightarrow \quad P = \frac{2e^2 a^2}{3c_e^3 (1 - \beta^2)^3}$$

... for Gravitation

$$\frac{dP}{d\Omega} = \frac{-Gm^2a^2\sin^2\theta}{4\pi c_g^3(1 - \beta\cos\theta)^5} \implies P = -\frac{2Gm^2a^2}{3c_g^3(1 - \beta^2)^3}$$

Gravitational Radiation Produced by a Mass in a Circular Orbit

$$\frac{dP}{d\Omega} = \frac{-Gm^2\alpha^2[(1-\beta\cos\theta)^2 - (1-\beta^2)\sin^2\theta\cos^2\varphi]}{4\pi c_g^3(1-\beta\cos\theta)^5}$$

$$P = -\frac{2Gm^2a^2}{3c_q^3(1-\beta^2)^2}$$

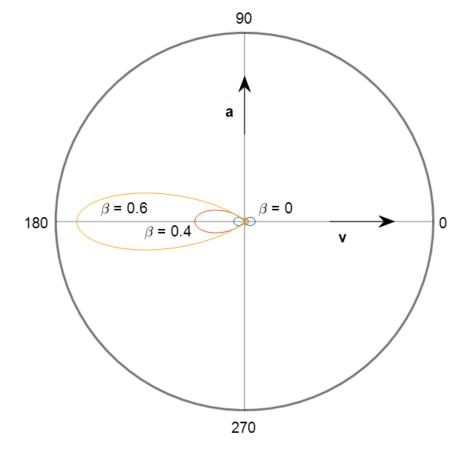


Figure 15

Gravitational Radiation Produced by a Mass in a Circular Orbit (continued)

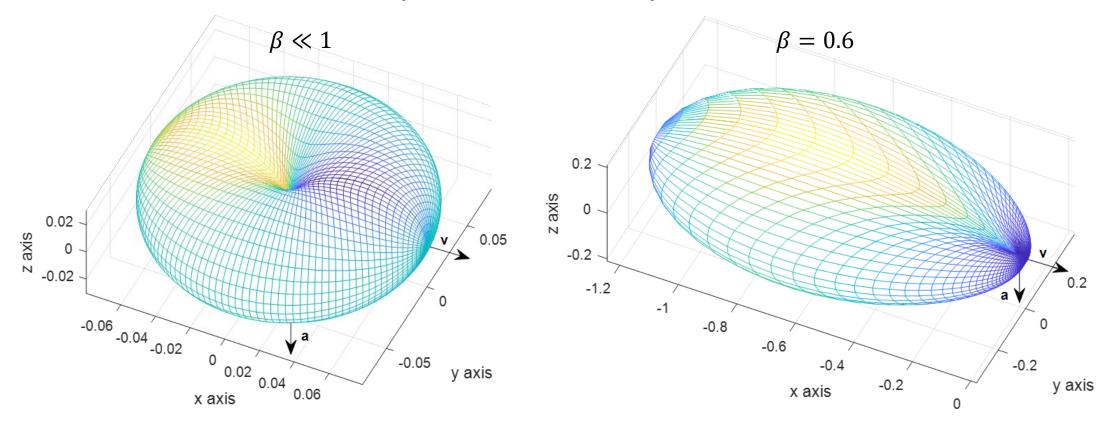


Figure 16

Figure 17

Radiation in a Circular Orbit

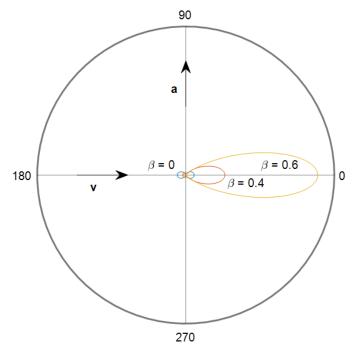


Figure 18

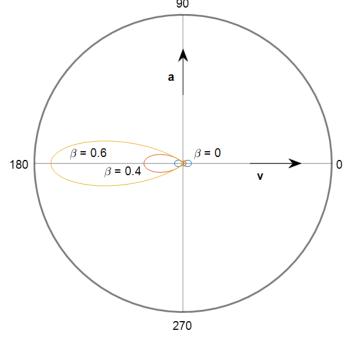


Figure 19

... for Electromagnetism

$$\frac{dP}{d\Omega} = \frac{e^2 a^2 [(1 - \beta \cos \theta)^2 - (1 - \beta^2) \sin^2 \theta \cos^2 \varphi]}{4\pi c_e^3 (1 - \beta \cos \theta)^5}$$

$$\Rightarrow P = \frac{2e^2 a^2}{3c_e^3 (1 - \beta^2)^2}$$

... for Gravitation

$$\frac{dP}{d\Omega} = \frac{-Gm^2a^2[(1 - \beta\cos\theta)^2 - (1 - \beta^2)\sin^2\theta\cos^2\varphi]}{4\pi c_g^3(1 - \beta\cos\theta)^5}$$

$$\Rightarrow P = -\frac{2Gm^2a^2}{3c_g^3(1 - \beta^2)^2}$$

Gravitational Radiation Animation

• https://gravityvisualizer.vercel.app/

Conclusions

- Sources of gravitational fields are mass and momentum
- Field energy is negative
- Gravitational fields and radiation behave relativistically
- Gravitational radiation is produced by accelerated masses
- Gravitational radiation patterns mirror dipole patterns for electromagnetic radiation

Cole Prather

Future Work

- Immediate Future
 - Determine precession for planetary orbits and compare to observation
 - Lense-Thirring precession
 - Develop a radiation instructional tool
- Foreseeable Future
 - Quantum gravity

References

- Heald, M,. and Marion, J,. "Classical Electromagnetic Radiation," Dover, 2012
- Heaviside, O., "Electromagnetic Theory," The Electrician, 1893, 31, pp. 281-282 & 359
- Hills, B,. "Gravito-electromagnetism and Mass Induction," 2020
- Jefimenko, O., "Causality, Electromagnetic Induction, and Gravitation," *Electret Scientific, 2000*

Cole Prather

Acknowledgements

- Thesis Committee
- Engineering & Physics Department
- Jackson College of Graduate Studies
- RCSA Research Grant
- Kegan Johnson & Maddy Clark

Cole Prather

Questions?